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Abstract

Motivation: Missense variants are a frequent class of variation within the coding genome, and some of them cause
Mendelian diseases. Despite advances in computational prediction, classifying missense variants into pathogenic or
benign remains a major challenge in the context of personalized medicine. Recently, the structure of the human
proteome was derived with unprecedented accuracy using the artificial intelligence system AlphaFold2. This raises
the question of whether AlphaFold2 wild-type structures can improve the accuracy of computational pathogenicity
prediction for missense variants.

Results: To address this, we first engineered a set of features for each amino acid from these structures. We then
trained a random forest to distinguish between relatively common (proxy-benign) and singleton (proxy-pathogenic)
missense variants from gnomAD v3.1. This yielded a novel AlphaFold2-based pathogenicity prediction score,
termed AlphScore. Important feature classes used by AlphScore are solvent accessibility, amino acid network
related features, features describing the physicochemical environment, and AlphaFold2’s quality parameter (pre-
dicted local distance difference test). AlphScore alone showed lower performance than existing in silico scores used
for missense prediction, such as CADD or REVEL. However, when AlphScore was added to those scores, the per-
formance increased, as measured by the approximation of deep mutational scan data, as well as the prediction of
expert-curated missense variants from the ClinVar database. Overall, our data indicate that the integration of
AlphaFold2-predicted structures can improve pathogenicity prediction of missense variants.

Availability and implementation: AlphScore, combinations of AlphScore with existing scores, as well as variants
used for training and testing are publicly available.

1 Introduction

The comprehensive assessment of genetic variation using exome or
genome sequencing to identify variants causing monogenic diseases
is becoming increasingly routine in clinical genetics. Variants consid-
ered are nowadays typically assessed using the criteria of the
American College of Medical Genetics and Genomics (ACMG crite-
ria) (Richards et al. 2015) or refinements based on these. In the
ACMG criteria, variants are classified into one of five pathogenicity
classes [benign, likely benign, variant of uncertain significance
(VUS), likely pathogenic, and pathogenic] based on weighted sums
of arguments for and against a possible pathogenicity. Arguments

considered include predicted functional effect, segregation, and fre-
quency data, as well as computational prediction scores.

While loss-of-function variants are comparably easy to interpret,
the assessment of missense variants is challenging and the applica-
tion of the ACMG criteria often results in the classification VUS,
which is of limited benefit to the patient and their clinical care. At
the time of writing, 92% of missense variants (190 258 of 205 726)
in ClinVar were classified as VUS or variants with conflicting inter-
pretations of pathogenicity. In contrast, this proportion was only
13% for frameshift variants (3136 of 24 122) (Landrum et al.
2018). The challenge of classifying missense variants is additionally
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aggravated by the fact that rare missense variants are relatively fre-
quent in individual genomes (Karczewski et al. 2020). Therefore,
additional approaches are needed to better classify missense variants
in the future such as improved computational prediction scores.

One widely used computational prediction score is the
Combined Annotation Dependent Depletion (CADD) score, which
was first described in 2014 (Kircher et al. 2014) and has seen major
updates since then (Rentzsch et al. 2019). CADD integrates a wide
range of features, such as the missense prediction scores SIFT (Ng
and Henikoff 2003) and PolyPhen-2 (Adzhubei et al. 2010).
Recently, two additional computational prediction scores that yield
missense variant-specific scores have increased in popularity: (i)
REVEL, an ensemble method that combines 13 established predic-
tion tools (including PolyPhen-2 and SIFT; Ioannidis et al. 2016)
and (ii) DEOGEN2 (Raimondi et al. 2017), which incorporates in-
formation concerning the gene, its protein domains, and interac-
tions. Benchmarks have shown that REVEL and DEOGEN2
predictions correlate well with deep mutational scan (DMS) data
(Livesey and Marsh, 2020).

So far, none of the commonly used prediction scores systematic-
ally includes information of the 3D protein structure. This may be
attributable, in part, to the fact that for �80% of residues no experi-
mental structures are yet available (Somody et al. 2017; Diwan et al.
2021). First attempts to incorporate protein information have been
performed by Polyphen-2, which uses information on accessible sur-
face area of the residue, change in hydrophobic propensity, and the
crystallographic B-factor, for those proteins where experimental
protein structures were available. Notably, 1 of the 11 features used
in DEOGEN2 is “protein–protein interaction” as derived from ex-
perimental protein structures.

Recently, the artificial intelligence system AlphaFold2 generated
a highly accurate prediction of nearly all 3D protein structures of
the human proteome (Jumper et al. 2021; Tunyasuvunakool et al.
2021). It has been suggested that the AlphaFold2 system cannot dir-
ectly predict the effect of missense variants (Buel and Walters 2022).
However, AlphaFold2 wild-type structures have already been used
to generate a constraint score of individual amino acids by integrat-
ing 3D structural information (7020 of the 16 533 structures used;
Li et al. 2022), and to predict the effect of missense variants on pro-
tein stability (Akdel et al. 2022; Chuah et al. 2022; Iqbal et al.
2022). Still, the potential of AlphaFold2-derived protein structures
for improving the in silico prediction of the pathogenicity of mis-
sense variants in the human genetics context is only partially
explored.

The aim of the present study was to determine whether the struc-
ture predictions of AlphaFold2 can improve systematic prediction of
the pathogenicity of missense variants. For this purpose, we
extracted a set of features from the predicted structures to train tree-
based machine-learning classifiers. Using variants from DMS and
ClinVar, we show that AlphaFold2 structures contain additional in-
formation that is beneficial for pathogenicity assessment, and that
this information can be integrated with existing prediction scores in
order to increase their predictive value.

2 Methods

2.1 Software
The present data were generated using a custom Snakemake pipe-
line, which is available via github (https://github.com/Ax-Sch/
AlphScore). The main frameworks used were Snakemake version
6.12.3, Python version 3.10, and R version 4.1.1.

2.2 Datasets
For training and testing, two missense variant datasets were defined.
The first contained missense variants derived from the population
database gnomAD [version 3.1 (Karczewski et al. 2020) as included
in dbNSFP]. A flowchart describing the creation of this dataset is
shown in Supplementary Fig. S2A. Variants in this dataset with an
allele frequency >0.1% were labeled as proxy-benign. In contrast,
proxy-pathogenic variants were defined as singleton variants in

gnomAD genomes that originated from the Non-Finnish European
(NFE) subcohort and which were absent in both the 1000 Genomes
Project and the National Heart, Lung, and Blood Institute (NHLBI)
Exome Sequencing Project (ESP6500). Due to the potential sample
overlaps between gnomAD genomes (version 3.1) and gnomAD
exomes (version 2.1.2), in gnomAD exomes an allele count of 1 was
tolerated if variants originated from the NFE subcohort of gnomAD
exomes. To reduce biases in the training set, the proxy-pathogenic
variants were subsampled to yield a constant ratio of proxy-
pathogenic to proxy-benign variants for each reference amino acid
(see Supplementary Fig. S3, ratio approximately 0.78).

The second dataset was created by filtering ClinVar (version
20210131 as included in dbNSFP, Landrum et al. 2018) for mis-
sense variants labeled as benign/likely benign or pathogenic/likely
pathogenic.

To split training and validation sets, 80% of proteins were
selected at random. The gnomAD variants within these proteins
served as the training set (gnomAD_train), whereas variants that
were present in ClinVar but not in gnomAD_train served as the val-
idation set (ClinVar_val). ClinVar variants within the remaining
20% of proteins, and ClinVar variants that were new to ClinVar
version 20220109 (downloaded from NCBI, Landrum et al. 2018),
were used as the final test set (ClinVar_test). The independence of
the datasets was confirmed by mutual exclusion of variants via
chromosome, position, reference allele, and alternative allele (see
Supplementary Fig. S1).

2.3 Feature extraction
Protein structures predicted by AlphaFold2 for the human reference
proteome were downloaded from the EMBL-EBI website (https://
alphafold.ebi.ac.uk/download, 29 November 2021, version 2).
Several tools were applied for feature extraction. First, secondary
structures and solvent-accessible surface areas were extracted using
the software DSSP [version 3.0.0 (Kabsch and Sander 1983)].
Second, the FEATURE framework [version 3.1.0 (Halperin et al.
2008)] was applied to calculate physicochemical features within
spheres with diameters of 0, 3, and 6 angstroms. The values of the
C-alpha atom of the FEATURE framework were selected for each
residue. Inter-residue interactions and contacts were also extracted
using a modified version of the Protinter software (https://github.
com/Ax-Sch/protinter). Half-sphere exposures and the predicted
local distance difference test (pLDDT) were extracted using the
Biopython or the Biopandas python package, respectively. Finally, a
weighted amino acid network was constructed for each protein
using the python package biographs and an atom–atom distance cut-
off of 4 Å (https://github.com/rodogi/biographs). This network was
used to calculate weighted means of the properties of neighbor
amino acids, as well as network-based metrics, using the python
package networkx (see Supplementary Table S1). In cases where sev-
eral structural models were available for one protein, the average
value for each feature across the structural models was used. The
features obtained for each amino acid were then added to the
dbNSFP4.2a database (Liu et al. 2011, 2020) using the UniProt ID
and the Variant Effect Predictor annotations as keys.

2.4 Data preprocessing
In addition to the features described above, 20 binary variables
encoding the reference amino acid and 20 binary variables repre-
senting the alternative amino acid were created (see Supplementary
Table S1). To optimize representation of the effects of amino acid
substitutions, the average values of selected features for each of the
20 possible amino acids were determined. For this purpose, the
gnomAD_train dataset was used and filtered for residues with high
confidence prediction (pLDDT>90). The average value obtained
was attributed to the alternative amino acid for each missense vari-
ant. The difference between this average value assigned to the alter-
native amino acid and the value extracted for the reference amino
acid was then calculated. This difference was appended to the
dataset.
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2.5 Machine learning and grid search
Due to the robustness and interpretability of tree-based predictors,
gradient boosting (R package xgboost), random forests (R package
ranger), and extremely randomized trees (R package ranger) were

selected as candidate algorithms. Several algorithm/parameter com-
binations were evaluated during the grid search, as shown in

Supplementary Table S3. The performance of each model was eval-
uated in ClinVar_val by calculating the area under the receiver oper-
ating characteristics (AUROC). The best model (AlphScore) used

random forests, as implemented in the package ranger with 2000
trees (num.trees), a maximal depth (max.depth) of 5, and a minimal

node size (min.node.size) of 10. Otherwise, default parameters were
used. Prior to model fitting, identical features were pruned (correl-
ation higher than 0.999999). The features listed in Supplementary

Table S1 were used for prediction.
In addition, we investigated whether changes to the filter criteria

for the proxy-pathogenic variants of the training set would influence
the results. Therefore, the filters based on the 1000 Genomes Project

and the NHLBI Exome Sequencing Project (ESP6500) were omitted
(see above and see Supplementary Fig. S2A) and a new model was
generated with the modified training set, using the same procedures

as described for AlphScore. The Spearman correlation between the
model scores obtained in this way and AlphScore was then calcu-
lated on independent ClinVar variants (ClinVar version 20210131;

cor.test command in R, see Supplementary Fig. S2B).

2.6 Analysis of model characteristics
To calculate permutation-based feature importance for AlphScore,
the option importance¼“permutation” was set in the package ran-

ger during model fitting. The permutation procedure is described in
detail on page 3 of Wright et al. (2016). In short, for each feature

the values are permuted between observations; the drop in predictive
performance is then used as an indicator of feature performance. To
assess the relevance of certain groups of features, two additional

models were fitted. These models used the parameters of the top per-
forming model, with the exception that either all AlphaFold-derived

features (NullModel) or all features containing AlphaFold’s pLDDT
parameter were removed from the provided predictor variables.

2.7 Combination with other missense prediction scores
AlphScore was combined with established missense prediction

scores using logistic regression as implemented in the R-function
glm with the option family¼binomial(link¼“logit”). The validation
dataset ClinVar_val was used as the source of training data.

2.8 DMS data and evaluation
DMS data for the following proteins were obtained from the supple-
mentary table provided by Livesey and Marsh (2020): UBE2I,
SUMO1, TPK1 (Weile et al. 2017); BRCA1 (Starita et al. 2015;

Findlay et al. 2018); P53 (Giacomelli et al. 2018); HRAS (Bandaru
et al. 2017); PTEN (Matreyek et al. 2018; Mighell et al. 2018); and

ADRB2 (Jones et al. 2020). DMS data for MSH2 and VKOR1 were
added (Chiasson et al. 2020; Jia et al. 2021). In cases where a study
had conducted different experiments under different conditions, the

condition with the highest overall absolute correlation to the com-
putational predictors was used. When DMS data for <20 variants

were available for any computational score, the respective DMS
dataset was excluded. This filter led to the exclusion of the protein
CALM1 from Weile et al. (2017). To ensure comparability, variants

of DMS datasets for which values from one of the prediction scores
were missing were excluded. Spearman correlations between the

DMS scores and the computational scores were calculated using the
cor.test command in R. In the case of negative correlations, the ab-
solute value was reported. To assess score performance, we calcu-

lated mean absolute Spearman correlation with the 13 DMS
datasets. Additionally, we calculated rank score statistics as previ-
ously described in Livesey and Marsh, 2020.

2.9 Bootstrapping
To estimate the uncertainty in our results, we used bootstrapping.
We generated 1000 bootstrapped samples from the variants for
which DMS data were available and from the ClinVar_test dataset,

respectively, using the R package boot with default parameters. In
each of these samples, we then calculated rank score statistics (DMS

data) or AUROCs (ClinVar_val).

2.10 Fitting the final model (AlphScore_final)
The parameters of the best performing prediction model were used
to fit a model on the full set of gnomAD variants (not restricted to
certain genes). This model was then combined with CADD, REVEL,

and DEOGEN2 using logistic regression and all (likely) benign/(like-
ly) pathogenic ClinVar variants that were not contained within the
training set (as described above). The final model was evaluated

with ClinVar variants that were new in ClinVar version 20220109
to ensure that this model had similar performance to AlphScore (see

Supplementary Figs S9 and S10).

2.11 Comparison of variants in membrane- and non-

membrane-associated proteins
Membrane-associated proteins were defined using the PANTHER
database (version 17.0; Thomas et al. 2003). In PANTHER protein

classes, the name and description was searched for “membrane,”
“junction,” or “transporter.” The protein classes thus obtained were

manually reviewed and, in the next step, proteins annotated with
these protein classes were collected (see Supplementary Table S5).
The ClinVar_test dataset was then split into two parts—variants in

proteins that are membrane-associated according to this definition
and all other variants. We then calculated AUROCs as described

above.

2.12 Generation of figures
Figure 1 was created with the software draw.io (https://github.com/

jgraph/drawio). Figures were assembled using Adobe Illustrator
(version CS6).

Figure 1. Workflow providing an overview of AlphScore generation and evaluation.
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3 Results

3.1 Generation of AlphScore
To determine the utility of AlphaFold2 structures for systematical
prediction of the pathogenicity of missense variants, we followed
the workflow shown in Fig. 1. First, structural features were
extracted for each amino acid contained in AlphaFold2-predicted
structures. To provide a comprehensive description of the environ-
ment of each amino acid in the structural models of AlphaFold2,
218 features such as molecular interactions, solvent accessibility,
secondary structure, and amino acid network features were
extracted (Supplementary Table S1). Second, the structural features
of each amino acid were added to the dbNSFP database (version
4.2), which contains all potential non-synonymous single-nucleotide
variants (SNVs) with extensive annotations (Liu et al. 2020). In
total, structural features from 17 880 proteins were mapped to
dbNSFP (listed in Supplementary Table S2). Third, three variant sets
were created for training, validation, and testing, respectively, using
the gnomAD and ClinVar databases (see Section 2). GnomAD var-
iants were used as a training set (gnomAD_train, n¼315 876), since
these variants are assumed to be less prone to biases such as cur-
ation, research history, clinical evaluation criteria, and existing com-
putational missense prediction scores (Shah et al. 2018). GnomAD
singleton variants and variants with a minor allele frequency (MAF)
> 0.1% were used as proxy-pathogenic and proxy-benign variants,
respectively (see Section 2 and Supplementary Fig. S2A for details
on filter criteria). Independent sets of (probably) benign or (prob-
ably) pathogenic ClinVar missense variants were used for validation
(ClinVar_val, total n¼35 640) and testing (ClinVar_test, total
n¼21 068).

The gnomAD_train and the ClinVar_val sets of variants were
used to train and evaluate three tree-based machine learning algo-
rithms (i.e. gradient boosting, random forest, and extremely
randomized trees), respectively. Hyperparameters were varied in a
grid search. A model using random forests, termed AlphScore,
achieved the best overall performance (AUROC of 0.793 on
ClinVar_val, see Supplementary Table S3). To verify that
AlphaFold2-based features play a genuine role in variant classifica-
tion, a new model was fitted using the same algorithm following the
removal of AlphaFold2-related features. This model (NullModel)
retained only the reference and alternative amino acid as well as sim-
ple physicochemical properties of amino acids, and obtained a sub-
stantially lower AUROC (0.609). This demonstrates that
AlphaFold2-based features are an important component of
AlphScore. In the same analysis of the validation set, CADD
achieved an AUROC of 0.871. However, AlphScore relies purely on
AlphaFold2-based features, and does not contain features such as
amino acid or nucleotide conservation. We also demonstrate that
the results are robust toward slight changes in the selection criteria
of proxy-pathogenic variants (Supplementary Fig. S2B).

3.2 Determination of most important features
To investigate which AlphaFold2-derived features were most im-
portant to AlphScore, permutation-based feature importances were
calculated (Fig. 2 and Supplementary Table S4). Among the top 25
features, the most important AlphaFold2-based feature categories
were: solvent accessibility (containing n¼8 features); amino acid
network-related features (n¼4); features describing the physico-
chemical environment (n¼4); and AlphaFold2’s parameter for the
reliability of its structural predictions, pLDDT (n¼2). The top 25
features included seven that were not derived from the structural
models of AlphaFold2. Instead, these seven features described the
identity or general properties of the reference or alternative amino
acid.

Since the AlphaFold2 pLDDT is an interesting potential new par-
ameter for predicting the pathogenicity of missense variants,
pLDDT-based features were removed from the model on a test basis.
As a result, the performance on the validation set (ClinVar_val)
decreased marginally, from 0.793 to 0.790. Nevertheless, it seems
interesting to note that both proxy-pathogenic gnomAD and (likely)

pathogenic ClinVar variants tend to be located in protein regions
with higher pLDDT values (see Supplementary Fig. S4).

3.3 Performance evaluation for AlphScore
To test AlphScore’s performance, AlphScore and the three in silico
prediction scores were applied to missense variants from DMS or
missense variants classified in ClinVar (ClinVar_test). In addition,
combined scores of AlphScore and CADD, REVEL, and
DEOGEN2, respectively, were created. To determine the best per-
forming parameters for combination, logistic regression was used to
fit ClinVar_val variants to combinations of scores (see Section 2).

DMS datasets that had been used in prior benchmarking analy-
ses were used (Livesey and Marsh, 2020), and recent data on MSH2
and VKOR1 were added (Chiasson et al. 2020; Jia et al. 2021). In
total, the present DMS dataset comprised 13 experiments in 11 pro-
teins (ADRB2, BRCA1, HRAS, MSH2, P53, PTEN, SUMO1,
TPK1, TPMT, UBE2I, and VKOR1). Calculations were then per-
formed to determine the Spearman correlations between different
computational prediction scores, and combinations thereof, and
DMS scores. The average absolute Spearman correlation between
AlphScore and the DMS scores was 0.344 (Supplementary Fig. S5).
In comparison, the established scores achieved an average absolute
Spearman correlation with the DMS scores of between 0.338 and
0.422 (Fig. 3A). For each prediction score, the addition of
AlphScore increased the average Spearman correlation (CADD:
0.338–0.399; DEOGEN2: 0.422–0.436; REVEL: 0.421–0.442).
Notably, while the highest overall Spearman correlation with the
DMS data (0.450) was achieved by a combination of AlphScore
with both DEOGEN2 and REVEL (Supplementary Fig. S6), it was
not reached for the combination of the three existing prediction
scores alone (Fig. 3). To investigate the reliability of those results,
we applied bootstrapping (n¼1000) and calculation of the rank
score, as introduced by Livesey and Marsh (2020; Fig. 3B). This
rank score is calculated as average across proteins with a scale from
0 to 1. Prediction scores with higher correlations to DMS data re-
ceive a value closer to 1. Adding AlphScore improved the rank score
for both CADD and REVEL in all and for DEOGEN2 in 95% of
bootstrapped samples. The combination AlphScore with both
DEOGEN2 and REVEL achieved the highest rank score in all boot-
strapped samples.

Figure 2. Importance of features in AlphScore. Bar graph displaying permutation-

based feature importance for the 25 most important features (total number of

features¼ 218). The feature categories are color-coded. The delta sign represents

the difference between the alternative amino acid and the reference amino acid for a

given feature (see Section 2). Alt. AA, alternative amino acid; AA, amino acid;

Solvent acc. s. area, solvent accessible surface area; VDW, Van der Waals; HSE-up,

half-sphere exposure of the upper sphere; HSE-down, half-sphere exposure of the

lower sphere; pLDDT, predicted Local Distance Difference Test, AlphaFold2 per-

residue confidence score.
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Investigations were then performed to determine how AlphScore
and combinations of AlphScore with existing prediction scores
would perform in the test set of ClinVar variants [ClinVar_test,
n¼21 068, 9224 (likely) benign, 11 844 (likely) pathogenic], which
contained proteins and variants that were independent from those
contained in gnomAD_train and ClinVar_val (see Section 2). The
AUROC of AlphScore alone was 0.799, whereas CADD,
DEOGEN2, and REVEL achieved 0.885, 0.886, and 0.929, respect-
ively. However, it should be noted that clinically relevant variants
were included in the DEOGEN2 and REVEL training sets (variants
from Humsavar/Uniprot or HGMD). Therefore, overlaps with
ClinVar_test are likely, and reproduction of biases that may be pre-
sent in ClinVar is possible. Again, in each case, the addition of
AlphScore to the established scores increased the respective AUROC
(CADD: 0.885–0.909; DEOGEN2: 0.886–0.907; and REVEL:
0.929–0.935; see Fig. 4). Use of the area under the curve in preci-
sion–recall curves as an alternative measure generated very similar
results (Supplementary Fig. S7). Reassuringly, these results could be
reproduced in all bootstrapped variant samples (n¼1000).

As an exploratory analysis we then divided our ClinVar_test data-
set into two parts—variants located in proteins that are membrane-
associated according to the PANTHER database (Thomas et al. 2003),
and variants for which this is not the case (see Section 2). We deter-
mined the AUROC values for these two subsets of data, and no major
differences were apparent (Supplementary Fig. S8).

3.4 Availability of pre-computed scores
Finally, the random forest was retrained on the complete gnomAD-
derived training set with the aim to maximize power. Thus, no var-
iants in specific proteins were held-out for testing. The resulting
score was termed AlphScore_final and could be calculated for 80%
(n¼66 931 527) of dbNSFP’s variants. Missing values are due to
protein structures that could not be clearly mapped to dbNSFP.
AlphScore_final and combinations of AlphScore_final with CADD,
REVEL, or DEOGEN2 are available for download (DOI: 10.5281/
zenodo.6288139; Supplementary Figs S9 and S10 and
Supplementary Table S6 for additional data on the final scores).

4 Discussion

The present study generated AlphScore, a novel prediction score for
missense variants which relies solely on features derived from the
structural predictions of AlphaFold2. Comparisons with

experimental high-throughput data and clinically informed variants
from ClinVar showed that the addition of AlphScore improved the
performance of established in silico missense prediction scores. This
suggests that AlphScore captures information that is not encom-
passed in the existing scores, or that was sufficiently weighted in
their training. To facilitate future work, the end-to-end pipeline and
precomputed scores for 67 million missense variants have been
made accessible to the wider research community.

When we analyzed structure-derived feature categories, we iden-
tified solvent accessibility as the most important feature category for
AlphScore. This is in concordance with expectations, since the in-
accessible core of a protein is strongly conserved (Overington et al.
1992), and disease associated missense variants are enriched in resi-
dues with low-solvent accessibility (Savojardo et al. 2020).
Furthermore, among the 25 most important features we identified
an interesting new parameter, i.e. the quality score of AlphaFold2,
pLDDT, which, in addition to its technical sources, has been previ-
ously associated with intrinsically disordered protein regions (Ruff
and Pappu 2021; Tunyasuvunakool et al. 2021). Regions with low
pLDDT display a depletion of both pathogenic variants from
ClinVar, and proxy-pathogenic variants from gnomAD. This could
indicate that these regions tend to be less disease-relevant in aggre-
gate than well-structured regions. However, intrinsically disordered
regions were implicated in important functions, such as mediating
interactions with protein domains or harboring posttranslational
modifications (Babu 2016). In general, they also show lower conser-
vation, as well as an altered amino acid composition, in comparison
to well-structured regions (Brown et al. 2010), which could partially
explain their depletion of pathogenic variants in ClinVar.

Despite the potential of AlphScore to improve existing missense
prediction scores, several limitations in the current implementation
of AlphScore remain. For instance, AlphScore only considers fea-
tures that are represented in the structural environment of an amino
acid in AlphaFold2 models. Thus, structural features such as post-
translational modifications, or features of the amino acid

Figure 3. Combining AlphScore with established missense prediction scores

improves correlation with DMS data. (A) Bar graphs displaying the mean absolute

Spearman correlation between DMS scores and computational prediction scores.

The dots represent the Spearman correlations of individual DMS experiments. The

error bars represent the standard error of the mean. (B) Boxplots of rank scores as

defined by Livesey and Marsh (2020), for 1000 bootstrapped samples. Higher rank

scores indicate better Spearman correlations with DMS datasets compared with the

competing prediction scores. The y-axis has been split to improve visibility. (A and

B) Bars or box plots corresponding to scores containing AlphScore are highlighted

in (darker) gray. Note that variants in the sets gnomAD_training and ClinVar_val

were removed from the analyses.
Figure 4. Combining AlphScore and established prediction scores improves the pre-

diction of ClinVar variants. (A) Bar graphs representing the average AUROCs of the

prediction scores denoted on the x-axis as obtained from the receiver operating

characteristics (ROC) curves shown in B–D. Bars corresponding to scores contain-

ing AlphScore are highlighted in darker gray. (B–D) ROC curves showing the per-

formance of AlphScore (B–D, red), CADD (B, blue), DEOGEN2 (C, green), REVEL

(D, lilac) and linear combination of the AlphaFold-based score with the three exist-

ing prediction scores (black). A hold-out set of 9224 (likely) benign and 11 844

(likely) pathogenic missense variants from ClinVar (ClinVar_test) was used as data

source. The gray line (NullModel) represents the baseline model, which was trained

on the gnomAD training set, without AlphaFold-based features. AUC, area under

the curve.
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environment resulting from the quaternary structure, are not consid-
ered. Furthermore, since AlphScore is based solely on AlphaFold2
structural models, non-coding effects, such as alterations in splicing,
are not considered either. Another limitation is proteins that are cur-
rently not covered by AlphScore, due to difficulties in mapping be-
tween Uniprot and genomic positions (https://www.uniprot.org/
help/canonical_nucleotide).

To improve AlphScore, a number of avenues could be explored in
future research. First, the choice of extracted features could be refined,
or machine-learning algorithms that do not require manual feature en-
gineering, such as 3D convolutional neural networks (Torng and
Altman 2017), could be applied. Second, the training set might be opti-
mized, e.g. by using variants with stronger signals of purifying selection
[such as simulated de novo variants as opposed to proxy-pathogenic
singleton variants (Kircher et al. 2014)]. Finally, additional layers of in-
formation, like species conservation or existing missense prediction
scores, could be integrated into the score at an earlier stage, i.e. when
training the initial random forest model. It will be interesting to see the
relative importance of structure-based features in such integrated
scores. This is particularly true if advanced models of sequence evolu-
tion, such as the recently published model EVE, are integrated with
structural features, since AlphaFold2 structures themselves are based
primarily on sequence evolution data. However, currently EVE only
supports a limited set of genes (Frazer et al. 2021). Our opinion is that
the implicit or explicit representation of human proteins as 3D struc-
tures will remain an important layer of information for missense vari-
ant interpretation.

The present study focused on predicting the pathogenicity of mis-
sense variants, rather than determining the pathogenic mechanism of a
single variant. In principle, to investigate the pathogenic mechanism,
allowing the AlphaFold2 model to predict the structure of the protein
with the mutant amino acid sequence would be a logical approach.
However, research has shown that AlphaFold2 does not accurately pre-
dict the structural effect of variants that are known to lead to a struc-
tural change (Buel and Walters 2022). At present, established methods
such as molecular modeling should rather be considered to answer
these questions. As input for such methods, and thus for the study of
the pathogenic mechanism of missense variants, the AlphaFold2-based
structures are a valuable resource.

In summary, we applied a machine-learning approach with clas-
sical feature extraction to the protein structures generated by
AlphaFold2 and demonstrated that these structures contain informa-
tion that is valuable in terms of predicting the pathogenicity of mis-
sense variants. We are eager to see how other groups will use
AlphaFold2-based structures to predict the pathogenicity of mis-
sense variants and whether approaches, such as modifications of the
AlphaFold2 model, might be competitive in predicting the pathogen-
icity of missense variants.
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